Part Number Hot Search : 
MOC8104 NTE1014 R1500 3EDXXX KTC1003 MB602XXX MSM7540L KTLP160J
Product Description
Full Text Search
 

To Download MAX1545EVKIT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-2870; Rev 0; 04/03
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
________________________________________________________General ________________________________________________________
MAXIM
Features
TM
General Description
Evaluates: MAX1544/MAX1545 Evaluates: MAX1544/MAX1545
_________________________________________________________________________________________Features _________________________________________________________________________________________
The MAX1544/MAX1545 evaluation kits (EV kits) demonstrate the high-power, dynamically adjustable multiphase notebook CPU application circuit. This DC-DC converter steps down high-voltage batteries and/or AC adapters, generating a precision, low-voltage CPU core VCC rail. The MAX1544 EV kit meets the mobile and desktop AMD Hammer CPU transient voltage specification. The MAX1545 EV kit meets the desktop and mobile Pentium 4 (P4) CPUs transient voltage specification. The MAX1544/MAX1545 kits consist of the MAX1544 or MAX1545 Dual-Phase Quick-PWMTM stepdown controller, two MAX1980 slave controllers and the MAX6590 temperature sensor. The MAX1544/MAX1545 kits include active voltage positioning with adjustable gain and offset, reducing power dissipation and bulk output capacitance requirements. The kit features independent four-level logic inputs for setting the suspend voltage (S0/S1). The MAX1980 provides additional gate drive circuitry, phase synchronization, current limit, and current balancing. Precision slew-rate control provides "just-in time" arrival at the new DAC setting, minimizing surge currents to and from the battery. This fully assembled and tested circuit board provides a 5bit digitally adjustable output voltage from a 7V to 24V battery input range. The EV kit operates at 300kHz switching frequency and has superior line- and loadtransient response.
Pentium is a registered trademark of Intel Corp. Hammer is a trademark of Advanced Micro Devices, Inc. QuickPWM is a trademark of Maxim Integrated Products, Inc.

Quad-Phase Quick-PWM
EV Kit
Mobile and Desktop P4 or AMD Hammer Compatible Active Voltage Positioning with Adjustable Gain, Offset and Remote Sensing High Speed, Accuracy and Efficiency Low Bulk Output Capacitor Count Multiphase Fast-Response Quick-PWM Architecture MAX1544/MAX1545 Dual-Phase Controller Two MAX1980 Slave Controllers 7V to 24V Input Voltage Range 5-Bit On-Board DAC Mobile P4: 0.60V to 1.75V Output Range Desktop P4: 1.10V to 1.85V Output Range AMD Hammer: 0.675V to 1.55V Output Range


68A Load-Current Capability (17A Each Phase) 300kHz Switching Frequency MAX6509 Temperature Sensor 40-Pin Thin QFN Package (MAX1544/MAX1545) 20-Pin Thin QFN Package (MAX1980) Fully Assembled and Tested
___________________________________Ordering ___________________________________
Ordering Information
IC PACKAGE 40 QFN (MAX154_) 20 QFN (MAX1980)
PART MAX1544EVKIT MAX1545EVKIT
TEMP RANGE 0C to +70C
___________________________________________________________________________________________________________________________________Component ___________________________________________________________________________________________________________________________________
Component List
DESIGNATION C1-C4, C7, C20, C25, C26, C33, C35, C62, C64 C5, C24, C36, C49 C6, C21, C23, C38, C39, C51, C60
QTY 0
DESCRIPTION Not Installed (0603) 100pF 5% 50V C0G ceramic capacitor (0603) Murata GRM1885C1H101J
DESIGNATION C8-C12, C31, C32, C47 or
QTY 8 or 8 0 4
DESCRIPTION 330F, 2.5V 9m Low-ESR polymer capacitor (D case) Sanyo 2R5TPE330M9 330F, 2V 7m Low-ESR specialty polymer capacitor (D case) Panasonic EEFSD0D331XR Not installed (E case) 1000pF 10% 50V C0G ceramic capacitor (0603) Murata GRM188R71H102K
4
C8-C12, C31, C32, C47 C13
7
0.22F 16V X5R ceramic capacitor (0805) Taiyo Yuden EMK212BJ224KG
C14, C29, C58, C59
MAXIM
Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
________________________________________________________________________________________________________
Component List (continued)
QTY 1 4 DESCRIPTION 3-pin header 0.6H 26A 0.9m Power Inductors Panasonic ETQP1H0R6BFA or Sumida CDEP134H-0R6 N-channel MOSFET (SO-8) International Rectifier IRF7811W or Fairchild FDS6694 Vishay/Siliconix Si7886DP (Power PAK) N-channel MOSFET (SO-8) International Rectifier IRF7822 or Fairchild FDS6688 or Vishay/Siliconix Si7442DP (Power PAK) N-channel MOSFET Central Semiconductor 2N7002 Not Installed, (short PC trace) (0603) 0.001 1% 1W resistor (2512) Panasonic ERJM1WTF1M0U 100 5% resistor (0603) 1k 1% resistor (0603) 60.4k 1% resistor (0603) 100k 1% resistor (0603) 20k 1% resistor (0603) 10 5% resistor (0603)
DESIGNATION C15, C22, C34, C45
QTY
4
C16 C17, C18, C19, C41, C42, C43, C53, C54, C65 C27, C40, C52
1
9
3
C28 C30, C37, C50, C56, C63 C44, C48, C55, C57 C61 C67, C69, C70, C83, C84, C85, C87, C97-C101 C71-C78, C80C82, C88-C92 D1
1
5
4
1
12
16
1
D2, D3, D4, D12
4
D5, D13 D6, D11
2 2
D7, D10
0
J2 JUA0-JUA5 JU1, JU3, JU4 JU13
1 6 3 0
DESCRIPTION 4700pF 10% 50V X7R ceramic capacitor (0603) Murata GRM188R71H472K (Not installed when using Si7442DP) 2.2F 10V X5R ceramic capacitor (0612) TDK C1632X5R1A225KTB09N 15F 20% 25V X5R ceramic capacitor (1812) TDK C4532X5R1E156M 1F 20% 10V X5R ceramic capacitor (0805) Taiyo Yuden LMK212BJ105KG or TDK C2012X7R1C105MKT 47pF 5% 50V C0G ceramic capacitor (0603) Murata GRM1885C1H470J 470pF 10% 50V X7R ceramic capacitor (0603) Murata GRM188R71H471K 1F 10% 25V X7R ceramic capacitor (0805) TDK C2012X7R1E105K 0.1F 10% 50V X7R ceramic capacitor (0805) Murata GRM21BR71H104K 10F 20% 6.3V X5R ceramic capacitor (0805) TDK C2012X5R0J106M or Taiyo Yuden AMK212BJ106MG 22F 6.3V X5R ceramic capacitor (1206) TDK C3216X5R0J226MT 100mA, 30V Dual Schottky Diode Central Semiconductor CMPSH-3A 5A Schottky Diode Central Semiconductor CMSH5-40 100mA, 30V Schottky Diode Central Semiconductor CMPSH-3 200mA Switching Diode Central Semiconductor CMPD2838 Not Installed 100mA, 30V Dual Schottky Diode Central Semiconductor CMPSH-3C 4-pin header Molex 39-29-3046 2-pin header 4-pin header 2-pin header
DESIGNATION JU2 L1-L4 N1, N2, N5, N6, N7, N10, N15, N16 or N2, N7, N10, N16 N3, N4, N8, N9, N11, N12, N13, N14 Q1, Q2 R1, R8, R11, R14, R15, R17, R20, R37, R50, R52, R63, R64, R78, R98, R102 R2, R9, R39, R45 R3, R33-R35, R40, R44, R46, R48, R49, R107 R5, R6, R18, R24 R7 R10 R12 R16, R83, R84 R19, R21, R27, R30, R36, R51, R53, R61, R62, R65-R67, R74, R75, R81, R87, R92, R99-R101, R103-R106, R108, R109 R26, R28, R73, R76, R77, R79, R80 R29, R31 R32, R42 R41, R47 R43, R38 R54-R59, R70, R95-R97, R110 R60 R82 U2, U3
8 or 4
8
2
0
4 10 4 1 1 1 3
0
Not Installed (0603)
7 2 2 2 2 11 1 1 2
0 5% resistor (0603) 30.1k 1% resistor (0603) 150k 1% resistor (0603) 20 5% resistor (0603) 10k 5% resistor (0603) 100k 5% resistor (0603) 11k 1% resistor (0603) 1M 5% resistor (0603) MAX1980ETP (20-TQFN)
2
MAXIM
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
__________________________________________________________________________________________________________Component __________________________________________________________________________________________________________
Component List (continued)
QTY 1 1 1 1 DESCRIPTION MAX1544/MAX1545 EV kit data sheet MAX1544/MAX1545 data sheet MAX1980 data sheet MAX6509 data sheet
Evaluates: MAX1544/MAX1545
DESIGNATION U4 U5 None None
QTY 1 0 10 1
DESCRIPTION MAX6509HAUK-T (5-SOT23) MAX6509HAUK-T (5-SOT23) Shunts MAX1544/MAX1545 PC Board
DESIGNATION None None None None
_____________________________
MAX1544 EV Kit Additional Components
DESCRIPTION 2.61k 1% resistor (0603) 24.9k 1% resistor (0603) 100k 1% resistor (0603) MAX1544ETL (40-TQFN) Socket 754
__________________________
MAX1545 EV Kit Additional Components*
DESIGNATION R4, R23 R22 R25 U1 U8
QTY 2 1 1 1 1
DESIGNATION QTY DESCRIPTION R4, R23 2 3.01k 1% resistor (0603) R22 1 182k 1% resistor (0603) R25 1 20k 1% resistor (0603) U1 1 MAX1545ETL (40-TQFN) U8 1 None *Contact Intel for the Mobile P4 specifications and contact Maxim for a reference schematic.
_______________________________________________________________________________________________________________________Component _______________________________________________________________________________________________________________________
Component Suppliers
WEBSITE www.centralsemi.com www.fairchildsemi.com www.irf.com www.panasonic.com www.sumida.com www.t-yuden.com www.component.tdk.com www.vishay.com
SUPPLIER Central Semiconductor Fairchild Semiconductor International Rectifier Panasonic Sumida Taiyo Yuden TDK Vishay/Siliconix
PHONE 516-435-1110 408-721-2181 310-322-3331 714-373-7939 708-956-0666 408-573-4150 847-390-4373 203-268-6261
FAX 516-435-1824 408-721-1635 310-322-3332 714-373-7183 708-956-0702 408-573-4159 847-390-4428 203-268-6296
Note: Please indicate that you are using the MAX1544 and MAX1545 when contacting these component suppliers.
________________________________________________________________________________Quick ________________________________________________________________________________
Quick Start
* * * * *
Recommended Equipment
7V to 24V, >100W power supply, battery, or notebook AC adapter DC bias power supply, 5V at 1A One or more dummy loads capable of sinking 68A total Digital multimeter (DMM) 100MHz dual-trace oscilloscope
3) Turn on the battery power before turning on the +5V bias power; otherwise, the output UVLO timer times out and the FAULT latch is set, disabling the regulator until +5V power is cycled or shutdown is toggled. 4) Observe the output voltage with the DMM and/or oscilloscope. Look at the LX switching nodes and MOSFET gate-drive signals while varying the load current.
_____________________________________________________Detailed _____________________________________________________
Procedure
Detailed Description
1) Ensure that the circuit is connected correctly to the supplies and dummy load prior to applying any power. 2) Verify that the shunts are across JU1 pins 1 and 3 (S0) and JU3 pins 1 and 4 (S1), JU2 pins 1 and 2 (SHDN) and JU4 pins 1 and 3 (TON). The DAC code settings (D4-D0) are set for 1.50V output through installed jumpers JUA3 and JUA1. A fixed +50mV offset fsets the final no load output voltage at 1.55V for the MAX1544 EV kit. A fixed -25mV offset sets the final no load output voltage at 1.45V for the MAX5145 EV kit.
This 68A multiphase buck-regulator design is optimized for a 300kHz frequency and output voltage settings from 1.0V to 1.5V. At VOUT=1.5V and VIN=12V, the inductor ripple is approximately 30% (LIR=0.3). The MAX1544/MAX1545 controller shares the current between its two phases that operate 180 out-of-phase, supplying 17A per phase. Each MAX1980 slave is triggered by one side of the MAX1544/MAX1545 low-side gate driver, supplying another 17A per slave.
MAXIM
3
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Setting the Output Voltage
The MAX1544/MAX1545 has two unique internal VID input multiplexers that can select one of three different VID DAC code settings for different processor states. On startup, the controller selects the DAC code from the D0-D4 input decoder when SUS=GND. A second multiplexer selects the lower S0-S1 DAC code when SUS is high (SUS=3.3V or VCC), or the higher S0-S1 DAC code when SUS=REF. The output voltage can be digitally set by the D0-D4 pins (Table 1) or the S0-S1 pins (Table 2). There are five different ways of setting the output voltage: 1) Drive the external VID0-VID4 inputs (no jumpers installed): The output voltage can be set by driving VID0-VID4 with open-drain drivers (pullup resistors are included on the board) or 3V/5V CMOS output logic levels (DPSLPVR = GND). 2) Install jumpers JUA0-JUA4: SUS=low. When JUA0- JUA4 are not installed, the MAX1544/MAX1545's D0- D4 inputs are at logic 1 (connected to VID_VCC). When JUA0-JUA4 are installed, D0-D4 inputs are at logic 0 (connected to GND). The output voltage can be changed during operation by installing and removing jumpers JUA0-JUA4. As shipped, the EV kit is configured with jumpers JUA0-JUA4 set for 1.50V output (Table 1). Refer to the MAX1544 and MAX1545 data sheets for more information. Drive DPSLPVR (suspend mode configuration): As shipped, the EV kit is configured for operation in the suspend mode S0-S1 set for 1.000V output (Table 2). Drive DPSLP: DPSLP can be driven by an external DPSLP driver to introduce offsets to the output voltage (Table 2). Drive header J1 for full system control: VID0-VID4, DPSLP, DPRSLPVR, VRON, and VROK are all available directly on header connections J1 (Figure 1c). Do not install jumper JU2 in this mode.
3)
4)
5)
Table 1. MAX1544/MAX1545 Output Voltage Adjustment Settings (SUS=GND)
MAX1545 D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MAX1544 VOUT (V) 1.550 1.525 1.500 1.475 1.450 1.425 1.400 1.375 1.350 1.325 1.300 1.275 1.250 1.225 1.200 1.175 VOUT (V) 1.750 1.700 1.650 1.600 1.550 1.500 1.450 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 MAX1545 D4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 MAX1544 VOUT (V) 1.150 1.125 1.100 1.075 1.050 1.025 1.000 0.975 0.950 0.925 0.900 0.875 0.850 0.825 0.800 OFF VOUT (V) 1.850 1.825 1.800 1.775 1.750 1.725 1.700 1.675 1.650 1.625 1.600 1.575 1.550 1.525 1.500 1.475 MAX1545 VOUT (V) 0.975 0.950 0.925 0.900 0.875 0.850 0.825 0.800 0.775 0.750 0.725 0.700 0.675 0.650 0.625 0.600 MAX1545 VOUT (V) 1.450 1.425 1.400 1.375 1.350 1.325 1.300 1.275 1.250 1.225 1.200 1.175 1.150 1.125 1.100 OFF CODE=VCC CODE=GND CODE=VCC CODE=GND
4
MAXIM
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Table 2. MAX1544/MAX1545 Output Voltage Adjustment Settings (SUS=High or REF)
LOWER SUSPEND CODES SUS* High High High High High High High High High High High High High High High High S1 GND GND GND GND REF REF REF REF OPEN OPEN OPEN OPEN VCC VCC VCC VCC S0 GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC VOUT (V) 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050 SUS* REF REF REF REF REF REF REF REF REF REF REF REF REF REF REF REF UPPER SUSPEND CODES S1 GND GND GND GND REF REF REF REF OPEN OPEN OPEN OPEN VCC VCC VCC VCC S0 GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC VOUT (V) 1.075 1.100 1.125 1.150 1.175 1.200 1.225 1.250 1.275 1.300 1.325 1.350 1.375 1.400 1.425 1.450
Evaluates: MAX1544/MAX1545 MAX1544/MAX1545
*Note: Connect the 3-level SUS input to a 2.7V or greater supply (3.3V or VCC) for an input logic level high.
Table 3. MAX1544/MAX1545 Operating Mode Truth Table
SHDN GND VCC SUS x GND SKIP x VCC OFS x GND or REF OUTPUT VOLTAGE GND D0-D4 (No offset) D0-D4 (No offset) OPERATING MODE Low-Power Shutdown Mode. DL_ is forced high, DH_ is forced low, and the PWM controller is disabled. The supply current drops to 1A (typ). Normal Operation. The no load output voltage is determined by the selected VID DAC code (D0-D4, Table 1). Dual-Phase Pulse Skipping Operation. When SKIP is set to 2V, the MAX1544/MAX1545 immediately enters dual-phase pulse skipping operation allowing automatic PWM/PFM switchover under light loads. Both MAX1980 slaves are disabled. The VROK upper threshold is blanked. Single-Phase Pulse Skipping Operation. When SKIP is pulled to GND, the MAX1544/MAX1545 immediately enters single-phase pulse skipping operation allowing automatic PWM/PFM switchover under light loads. Both MAX1980 slaves are disabled. The VROK upper threshold is blanked. Deep Sleep Mode. The no load output voltage is determined by the selected VID DAC code (D0-D4, Table 1) plus the offset voltage set by OFS. Suspend Mode. The no load output voltage is determined by the selected suspend code (SUS, S0-S1, Table 2), overriding all other active modes of operation. Fault Mode. The fault latch has been set by either UVP, OVP (if enabled), or thermal shutdown. The controller will remain in FAULT mode until VCC power is cycled or SHDN toggled.
VCC
x
REF
GND or REF
VCC
x
GND
GND or REF
D0-D4 (No offset)
VCC
GND REF or High x
x
0 to 0.8V or 1.2V to 2.0V x
D0-D4 (Plus offset) SUS, S0-S1 (Offset disabled) GND
VCC
x
VCC
x
x
MAXIM
5
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Reduced Power Dissipation Voltage Positioning
The MAX1544/MAX1545 EV kit uses voltage positioning to decrease the size of the output capacitor and to reduce power dissipation at heavy loads. Current-sense resistors (R2 and R9=1m) are used to sense the inductor current and adjust the output voltage. The current-sense resistors dissipate some power but the net power savings are substantial. This EV kit further improves efficiency by using an internal op-amp gain stage to allow a reduction in the sense resistor value. The MAX1544 op amp is configured for a gain of 2.5 (only 2 phases sensed) providing a -1.25mV/A voltage-positioning slope at the output when all four phases are active. The MAX1545 op amp is configured for a gain of 3 providing a slope of -1.5mV/A. Remote output and ground sensing eliminate any additional PC board voltage drops.
Load-Transient Experiment
One interesting experiment is to subject the output to large, fast load transients and observe the output with an oscilloscope. This necessitates careful instrumentation of the output, using the supplied scope-probe jack. Accurate measurement of output ripple and load-transient response invariably requires that ground clip leads be completely avoided and that the probe must be removed to expose the GND shield, so the probe can be plugged directly into the jack. Otherwise, EMI and noise pickup corrupt the waveforms. Most benchtop electronic loads intended for power supply testing lack the ability to subject the DC-DC converter to ultrafast load transients. Emulating the supply current di/dt at the CPU VCORE pins requires at least 10A/s load transients. One easy method for generating such an abusive load transient is to solder a power MOSFET directly across the scope-probe jack. Then drive its gate with a strong pulse generator at a low duty cycle (< 5%) to minimize heat stress in the MOSFET. Vary the high-level output voltage of the pulse generator to vary the load current. To determine the load current, you might expect to insert a meter in the load path, but this method is prohibited here by the need for low resistance and inductance in the path of the dummy load MOSFET. There are two easy alternative methods of determining how much load current a particular pulse-generator amplitude is causing. The easiest method is to observe the currents through inductors L1 and L2 with a calibrated AC current probe, such as a Tektronix AM503, or by looking across R2 and R9 with a differential probe. In the buck topology, the load current is approximately equal to the average value of the inductor currents.
Dynamic Output Voltage Transition Experiment
Observe the output voltage transition between 1.00V and 1.50V by setting jumpers JUA0-JUA4 to 1.50V and toggling the SUS input between GND and VCC, respectively. This is the worst-case transition and should complete within 100s. This EV kit is set to transition the output voltage at 1-LSB per 2s. The speed of the transition can be altered by changing resistor R7 (60.4k). During the voltage transition, watch the inductor current by looking across R2 and/or R9 with a differential scope probe or by inserting a current probe in series with the inductor. Observe the low, well-controlled inductor current that accompanies the voltage transition. The same slew rate and controlled inductor current are used during shutdown and startup, resulting in well-controlled currents into and out of the battery (input source). There are two other methods to create an output voltage transition. Select D0-D4 (JUA0-JUA4). Then either manually change the JUA0-JUA4 jumpers to a new VID code setting (Table 1), or remove all jumpers and drive the VID0-VID4 PC board test points externally to the desired code settings.
TON Settings
Jumper JU4 selects the MAX1544/MAX1545 switching frequency. Note: Always set the MAX1980 slaves to the same switching frequency as the MAX1544/MAX1545. Note: When changing the switching frequency, recalculate the inductor and output capacitor values using the equations in the MAX1544/MAX1545 and MAX1980 datasheets.
Table 4. Jumper JU4 Function (TON Setting)
SHUNT POSITION 1 and 2 1 and 3 (Default) 1 and 4 Not installed TON PIN Connected to GND Connected to REF Connected to VCC VR_ON driven by external signal MAX1544/MAX1545 SWITCHING FREQUENCY 550kHz. Short R104 and R108 to set the MAX1980s to 550kHz. 300kHz. 200kHz. Short R105 and R109 to set the MAX1980s to 200kHz. 100kHz. Not supported by MAX1980. Disable MAX1980 when setting MAX1544/MAX1545 at 100kHz for highest suspend mode efficiency.
Table 5. PIN19 Function and Setting
PIN 19 High Low MAX1544 (OVP PIN) Overvoltage Protection Enabled Overvoltage Protection Disabled MAX1545 (CODE PIN) Selects Mobile P4 VID code set Selects Desktop P4 VID code set
6
MAXIM
VCC +5V VBIAS
3
VDD R16 10
PIN 19 MAX1544 MAX1545 10 VCC VCC V+ BSTM
876 5 5 678
OVP CODE 30 VDD 26 (PC TRACE) 28
4
C27 1F 10V C16 2.2F 10V VBATT VBATT 7V TO 24V VOUT
1 2
D1 CMPSH-3A BSTS C44 1F 25V CM+ CMVOUT
4
36 R1 SHORT C6 0.22F N1 DHM R2 0.001
1 5 3 2 3 678 2 4
Evaluates: MAX1544/MAX1545
MAXIM
PIN 19 4 DHM LXM DLM C15 4700pF
1 1 3 2 3 2
VID0 VID1 23 22 N2 L1 0.6H R53 OPEN D3 C1 OPEN C10 330F 2.5V 21 20 27
876 5 4
19 24 PIN 19 D0 D1 D2 D3 DHM DLM N3 DLM N4 D4 29 S0 S1 VBATT 3 SUS 35 C21 0.22F
876 4 5 5 678
C48 1F 25V
C17 15F 25V
C65 15F 25V
REF 1 VID4 JU3 3 1 LM1 R73 0 R7 60.4k 1% BSTS C55 1F 25V CS+
4
JU1 3 2 4 5 4 C11 330F 2.5V
VID2 VID3
C13 OPEN
2 R8 SHORT (PC TRACE) C57 1F 25V L2 0.6H R81 OPEN D2
DPRSLPVR R70 100k 1 TIME DHS CCV LXS DLS ILIM PGND CMP REF CMN CSN CSP TON OAIN+ R97 100k SKIP 18 SKIP R77 0 FB C56 470pF R76 0 C20 OPEN 6 SHDN VROK 14 CCI OFS 7 25 R3 100 13 GNDS C5 100pF 11 Q2 2N7002 R20 SHORT (PC TRACE) C30 470pF R22* 182k 1% R82 1M R21 OPEN R19 OPEN AGND1 C63 470pF GND R25* 20k 1% Q1 2N7002 DPSLP# GND_SENSE REF 15 OAIN16 R23* 2.49k 1% C7 OPEN 17 R18 1k 1% R24 1k 1% 40 C25 OPEN 39 R14 SHORT (PC TRACE) VCC 4 2 1 2 VCC C23 0.22F 9 REF 38 C26 OPEN 37 CM+ R15 SHORT (PC TRACE) CMR17 SHORT (PC TRACE) 31
1 1 876 1 5 4 5
GND
MAX1544 U1* (BACKSIDE PAD IS CONNECTED TO GND) BSTS 33 N6 DHS
3 2 3 678 2 4
C18 15F 25V CSR9 0.001
C19 15F 25V VOUT VOUT
C28 47pF 12 34 32 N8 DLS
3 2 3 2
N7
DHS DLS N9 C22 4700pF
REF R12 20k 1% C24 100pF
R10 100k 1% 8
C2 OPEN
C8 330F 2.5V
C12 330F 2.5V
LM2 R4* 2.49k 1% R5 1k 1% R6 1k 1%
GND
VCC=100kHz OPEN=200kHz REF=300kHz GND=550kHz
VOUT_SENSE
REF
JU4
CSR11 SHORT (PC TRACE) CS+
CM+
3
CS+ VOUT_SENSE CMVOUT_SENSE CSGND_SENSE R84 10 R83 10 VOUT
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Figure 1a. MAX1544 EV Kit Schematic (Sheet 1 of 3)
VCC 1 2 VROK VOUT GND_SENSE
DISABLE
DPRSLPVR
VR_ON
JU2
3
R78 SHORT (PC TRACE)
R50 SHORT (PC TRACE)
AGND2
* See MAX1545 EV Kit Additional Components for Desktop P4 Solution.
7
Evaluates: MAX1544/MAX1545
VCC1 R47 20 VCC1 C38 0.22F 12 VCC 17 V+ BST
876 5 4 5 678
8
VDD VBATT 11 VDD 16 C39 0.22F VOUT CS1VOUT N5 DHS1 R45 0.001
1 5 5 4 3 2 3 678 2
D5 CMPSH-3
C40 1F 10V VBATT
R79 00 13 DD MAX1980 DH LX DL 9 LS1 5 4 CS1R34 100 POL CM+ R62 OPEN 20 TRIG R33 100 CM2 CMC33 OPEN AGND1 VCC2 R41 20 VCC2 C60 0.22F 12 VCC VDD BST DD MAX1980 DH LX DL 9 10 15 LIMIT COMP TON ILIM 14 DHS2 DLS2 C45 4700pF
4 1
R100 OPEN AGND1 C41 15F 25V
4
R37 SHORT (PC TRACE) C42 15F 25V CS1+ L3 0.6H R87 OPEN D4 C3 OPEN C9 330F 2.5V
DISABLE R36 OPEN 14 N10 15
876 4
VCC1 LIMIT COMP TON ILIM R35 100 C14 1000pF CS1+ CS+ GND CSC34 4700pF
1 1 3 2 3 2
D6 CMPD2838 18 DHS1 DLS1 N12 N11 DLS1 C32 330F 2.5V 6 C37 470pF R43 10k 3 19 R42 150k 1% VCC1 10
AGND1 CM+
VCC=200kHz OPEN=300kHz GND=550kHz REF R29 30.1k 1% C36 100pF 8 AGND1 7 VDD 1 CM+ C29 1000pF R46 100
R105 OPEN
R104 OPEN
U2 (BACKSIDE PGND PAD IS CONNECTED TO AGND1)
GND
AGND1 R102 SHORT (PC TRACE) R26 0 AGND1 R27 OPEN VDD R103 OPEN
DLM
3
1
D7 BAT54A OPEN
2
DLS
VBATT 11 D13 CMPSH-3 C52 1F 10V
VBATT
R80 0 16 13 18 6 C50 470pF R38 10k 3 19 R32 150k 1% VCC2 GND
R106 OPEN AGND2 17 V+ C51 0.22F
4 876 5 3 2 1
R52 SHORT (PC TRACE)
DISABLE R51 OPEN D11 CMPD2838 AGND2 CS+
876 5 5
678
C53 15F 25V N15
3 2 5
C54 15F 25V CS2+ N16
3 678 2 4
VOUT DHS2 L4 0.6H N13 N14
3 2 1 4
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
VOUT R39 0.001 DLS2 D12 R92 OPEN C4 OPEN CS2-
Figure 1b. MAX1544 EV Kit Schematic (Sheet 2 of 3)
VCC2 REF R31 30.1k 1% C49 100pF 8 AGND2 7 VDD U3 (BACKSIDE PGND PAD IS CONNECTED TO AGND2) CS+ CS5 4 C59 1000pF R48 100 POL CM+ R65 OPEN C35 OPEN AGND2 CM20 TRIG 1 2 C58 1000pF R44 100 R40 100 CS+ CSLS2 R49 100 CS2+ CS2R98 SHORT (PC TRACE) R30 OPEN AGND2 R28 0 R99 OPEN
3
VCC=200kHz OPEN=300kHz GND=550kHz
R109 OPEN
C31 330F 2.5V
C47 330F 2.5V
R108 OPEN
GND
AGND2
DLM
1
D10 BAT54A OPEN
2
MAXIM
DLS
VDD VDD R54 100k VID0 5 VCC JUA0 4 VRHOT# R67 OPEN 2 GND SET R61 OPEN R60 1 11k 1% U4 VRHOT# U5 2 GND OPEN JUA1 R56 100k VID2 VID2 JUA2 VDD VOUT VBIAS +5V VID3 DPSLP# GND VRHOT# VID4 VID4 JUA4 VROK VROK R96 100k VRHOT# VOUT R95 100k DPSLP# VID3 JUA3 R58 100k C69 10F C70 10F R110 100k R57 100k SET 1 MAX6509 HYST OUT 3 4 3 MAX6509 HYST OUT R55 100k VID1 VID1 R66 OPEN R64 SHORT (PC TRACE) R63 SHORT (PC TRACE) C62 OPEN VCC C61 0.1F 5 VID0 R101 OPEN R107 100 VDD
JU13
Evaluates: MAX1544/MAX1545
MAXIM
C83 10F C84 10F C85 10F C97 10F C98 10F C99 10F C100 10F C101 10F R59 100k PIN 19 PIN 19 JUA5 DPRSLPVR MAX1544 MAX1545 OVP CODE PIN 19 VR_ON VR_ON C71 22F DPRSLPVR C72 22F C73 22F C74 22F C75 22F C76 22F C77 22F C78 22F VOUT VOUT VBATT C80 22F C81 22F C82 22F C88 22F C89 22F C90 22F C91 22F C92 22F 3 C43 15F 25V 2
VID_VCC
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Figure 1c. MAX1544 EV Kit Schematic (Sheet 3 of 3)
4
J2
1
9
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
1 A B C D E F G H J K L M N P R T U V W Y 1 30 59 88 2 2 31 60 89 3 3 32 61 90 4 4 33 62 91 5 5 34 63 92 6 6 35 64 93 7 7 36 65 94 8 8 37 66 95 9 9 38 67 96 10 10 39 68 97 11 11 40 69 98 12 12 41 70 13 13 42 71 14 14 43 72 15 15 44 73 16 16 45 74 17 17 46 75 18 18 47 76 19 19 48 77 20 20 49 78 21 21 50 79 22 22 51 80 23 23 52 81 24 24 53 82 25 25 54 83 26 26 55 84 27 27 56 85 28 28 57 86 29 29 58 87 A B C D E F G H J K L M N P R T U V W Y
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 311 312 313 314 315 316 317 318 319 320 331 332 333 334 335 336 337 338 339 340 351 352 353 354 355 356 357 358 359 360 371 372 373 374 375 376 377 378 379 380 391 392 393 394 395 396 397 398 399 400 411 412 413 414 415 416 417 418 419 420 431 432 433 434 435 436 437 438 439 440 451 452 453 454 455 456 457 458 459 460 301 302 303 304 305 306 307 308 309 310 321 322 323 324 325 326 327 328 329 330 341 342 343 344 345 346 347 348 349 350 361 362 363 364 365 366 367 368 369 370 381 382 383 384 385 386 387 388 389 390 401 402 403 404 405 406 407 408 409 410 421 422 423 424 425 426 427 428 429 430 441 442 443 444 445 446 447 448 449 450 461 462 463 464 465 466 467 468 469 470
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
AA 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 AA AB 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 AB AC 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 AC AD 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 AD AE 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 AE AF 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 AF AG 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 AG AH 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 AH AJ 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 AJ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
GND VOUT
A24 A23
GND_SENSE VOUT_SENSE
AE15 AF15 AG14 AF14 AG13
VID[0] VID[1] VID[2] VID[3] VID[4]
Figure 3. CPU Socket (U8) pinout
10
MAXIM
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 4. MAX1544/MAX1545 EV Component Placement Guide - Top Side
MAXIM
11
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 5. MAX1544/MAX1545 EV Kit Component Placement Guide - Bottom Side
12
MAXIM
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545 MAX1544/MAX1545
Figure 6. MAX1544/MAX1545 EV Kit PC Board Layout - Top Side
MAXIM
13
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 7. MAX1544/MAX1545 EV Kit PC Board Layout - GND Layer 2
14
MAXIM
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 8. MAX1544/MAX1545 EV Kit PC Board Layout - Signal Layer 3
MAXIM
15
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 9. MAX1544/MAX1545 EV Kit PC Board Layout - Layer 4
16
MAXIM
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 10. MAX1544/MAX1545 EV Kit PC Board Layout - Layer 5
MAXIM
17
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 11. MAX1544/MAX1545 EV Kit PC Board Layout - Layer 6
18
MAXIM
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 12. MAX1544/MAX1545 EV Kit PC Board Layout - Layer 7
MAXIM
19
MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 13. MAX1544/MAX1545 EV Kit PC Board Layout - Bottom Layer
20
MAXIM


▲Up To Search▲   

 
Price & Availability of MAX1545EVKIT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X